Regulation by glycogen synthase kinase-3beta of the arborization field and maturation of retinotectal projection in zebrafish.

نویسندگان

  • Hirofumi Tokuoka
  • Tomoyuki Yoshida
  • Naoto Matsuda
  • Masayoshi Mishina
چکیده

The retinotectal projection is one of the best systems to study the molecular basis of synapse formation in the CNS because of the well characterized topographic connections and activity-dependent refinement. Here, we developed a presynaptic neuron-specific gene manipulation system in the zebrafish retinotectal projection in vivo using the nicotinic acetylcholine receptor beta3 (nAChRbeta3) gene promoter. Enhanced green fluorescent protein (EGFP) expression signals in living transgenic zebrafish lines carrying the nAChRbeta3 gene promoter-directed EGFP expression vector visualized the development of entire retinal ganglion cell (RGC) axon projection to the tectum. Microinjection of the nAChRbeta3 gene promoter-driven double-cassette vectors directing the expression of both dominant-negative glycogen synthase kinase-3beta (dnGSK-3beta) and EGFP enabled us to follow the development of individual RGCs and to examine the effect of the molecule on the axonal arborization and maturation of the same neurons in living zebrafish. We found that the expression of the dominant-negative form of zebrafish GSK-3beta suppressed the arborization field of RGC axon terminals in the tectum as estimated by the reduction of arbor branch length and arbor areas. Furthermore, the suppression of GSK-3beta activity increased the size of vesicle-associated membrane protein 2-EGFP puncta in RGC axon terminals at the early stage of innervation to the tectum. These results suggest that GSK-3beta regulates the arborization field and maturation of RGC axon terminals in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential expression of glycogen synthase kinase 3 genes during zebrafish embryogenesis

Glycogen synthase kinase 3 (GSK-3) belongs to a highly conserved family of protein serine/threonine kinase whose members in high eukaryotes are involved in hormonal regulation, nuclear signaling, and cell fate determination. We have identified two zebrafish homologues related to mammalian GSK-3, ZGSK-3alpha and ZGSK-3beta. ZGSK-3alpha was expressed uniformly from cleavage onward, and later was ...

متن کامل

Decreased glycogen synthase kinase 3-beta levels and related physiological changes in Bacillus anthracis lethal toxin-treated macrophages.

The lethal factor (LF) component of Bacillus anthracis lethal toxin (LeTx) cleaves mitogen activated protein kinase kinases (MAPKKs) in a variety of different cell types, yet only macrophages are rapidly killed by this toxin. The reason for this selective killing is unclear, but suggests other factors may also be involved in LeTx intoxication. In the current study, DNA membrane arrays were used...

متن کامل

Regulation of Glycogen Synthase Kinase 3β Functions by Modification of the Small Ubiquitin-Like Modifier

Modification of the Small Ubiquitin-like Modifier (SUMO) (SUMOylation) appears to regulate diverse cellular processes, including nuclear transport, signal transduction, apoptosis, autophagy, cell cycle control, ubiquitin-dependent degradation and gene transcription. Glycogen synthase kinase 3beta (GSK 3beta) is a serine/threonine kinase that is thought to contribute to a variety of biological e...

متن کامل

Glycogen synthase kinase-3β may contribute to neuroprotective effects of Sargassum oligocystum against amyloid-beta in neuronal SH-SY5Y cells

Glycogen synthase kinase (GSK)-3β mediates amyloid-beta (Aβ) and oxidative stress-induced neurotoxicity in neurodegenerative disorders. Natural products with antioxidant activity, such as Sargassum (S.) oligocystum may modulate GSK-3β enzyme and protect against Aβ-induced neurotoxicity. Therefore, we aimed to assess the neuroprotective effects of a methanolic extract of S. oligocystum against A...

متن کامل

Staphylococcus aureus induces microglial inflammation via a glycogen synthase kinase 3beta-regulated pathway.

A proinflammatory role for glycogen synthase kinase 3beta (GSK-3beta) has been demonstrated. Here, we addressed its roles on heat-inactivated Staphylococcus aureus-induced microglial inflammation. Heat-inactivated S. aureus induced tumor necrosis factor alpha (TNF-alpha) and nitric oxide (NO) production, at least in part, via a Toll-like receptor 2-regulated pathway. Neutralization of TNF-alpha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 23  شماره 

صفحات  -

تاریخ انتشار 2002